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Abstract: 7-O-Triflates of baccatin III or of taxol analogs are convenient precursors in alternate syntheses 
of A6"7-taxols and 7~,8[]-methano (cyclopropyl) taxols, two of the products initially obtained from reaction 
of taxols with methylDAST; hydrazine is an effective reagent for conversion of the 10-acetate group to the 
hydroxyl group. 

Taxol, in addition to its exciting potential as an antitumor agent, presents a fascinating array of 

challenges to the organic chemist) The highly functionalized diterpenoid nucleus of taxol not only 

provides a synthetic challenge but is subject to unusual and often unexpected chemical transformations. 

Contraction of rings A and B, 2 oxetane opening, z3 epimerization at C-7, 4 dienone formation, 5 and cyclo- 

propane formation s are some of the fascinating modifications of taxol which have been reported to date. 

Independently of the work reported recently by Chen and coworkers, 6"~ we have studied the reaction 

of a T-protected taxol with the fluorinating reagent, dimethylaminosulfur trifluoride (methylDAST). Our 

reaction of 2'-troc-taxol 7 (1) with methylDAST s gave 2'-troc-7-deoxy-7ct-fluoro-taxol (2, 33%) and 2'-troc- 

7-deoxy-713,813-methano-taxol (3, 23%), 9 results very similar to those reported by Chen and coworkers. 

However, we have isolated a third product from this reaction which is the olefin, 2'-troc-7-deoxy-At'7-taxol 

(4, 4%). Removal of the 2'-troc group gives 7-deoxy-At.7-taxol (5). The assignment of olefinic structures 

to 4 and 5 is based on three coupled, downfield signals for the C-5, C-6, and C-7 protons in the IH NMR 

spectra 1° and was confn'med as described below. Elimination with formation of olefins is a well 

documented side reaction in the reaction of alcohols with DAST. n 

Olefins are also produced in reactions of other taxol analogs with methylDAST. For example, the 

reaction with the 2'-troc derivative 7 of analog 6, in which the N-benzoyl group is replaced by 

benzyloxycarbonyl (Cbz), gave fluoride 8 (45%), cyclopropane 9 (18%), and olefin 10 (5%). Likewise, the 

reaction with the 2'-trot derivative 12 of analog 11, in which the N-benzoyl group is replaced by t- 

butyloxycarbonyl (BOC), gave fluoride 13 (47%), cyclopropane 14 (21%), and olefin 15 (5%). The 

isolation of olefins from these reactions is noteworthy because in every case the olefinic product is more 

potent than the alcohol precursor in assays which measure potential antitumor activity. ~2 

The low yields of olefins produced by the methylDAST reactions called for development of an 

alternate source. For this, we found it possible to prepare and purify 7-O-triflates of either baccatin III 

(16) or of the taxol analog. The reaction of 16 with triflic anhydride in CH2C12/pyddine gives baccatin III- 

7-OTf (17) in 80% yield) 3 When 17 is warmed in solution in the presence of DBU, elimination of the 7- 

O-triflate proceeds smoothly to generate the 6,7-olefin 18 in 70% yield) 4 The 6,7-olefins exhibit slightly 

enhanced sensitivity to acid catalyzed opening of the oxetane ring. Whereas the 2'-troc group of 4 can be 
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removed with zinc in HOAc-MeOH without rearrangement of the oxetane, 18 upon warming with acetic 

acid in C1CH2CH2C1 rearranges to 19 (70%). The structures of both 18 and 19 have been confirmed by x- 

ray crystallographic studies. 15 

H O , , , . . ~ . ~  / L v ~  0 HO ..... HO ..... 
#°s#OA c 

HO BZ~ AcO HO Bz(~ HO ~)H 

16, R = H 18 19 
17, R = SO2CF 3 

The A~'7-analog 20, obtained by removal of the 2'-troc group from 15, now can be prepared by the 

alternate route shown in Scheme I which we have developed independently of that by Didier and 

coworkers. 1~ First, baccatin III-7-O-Tf (17) is coupled with (4S,5R)-N-Cbz-2-(2,4-dimethoxyphenyl)-4- 

phenyl-5-oxazolidinecarboxylic acid (21) 9J6 to give 22 (87%, two epimers) from which the aminal groups 

are removed by exchange with acidic methanol to give 23 (93%). The Cbz group is removed from 23 by 

hydrogenolysis, giving the versatile intermediate 24 which is useful for attachment of a variety of N- 

substituents. Reaction of 24 with di-t-butylcarbonate provides the N-BOC compound 25 (77% from 23). 

Warming of 25 with DBU in THF generates the analog 2012'17 in 82% yield. Reaction of 24 with t- 

butylisocyanate provides the N-t-butylurea (TBU) compound 26 (74%). Warming of 26 with DBU in THF 

generates the analog 2712Js in 75% yield. 

The 7-O-triflates such as 17 also serve as excellent precursors for the 7l~,813-methano (cyclopropyl) 

taxol analogs. Simply stirring a solution of 17 with silica gel (40-63 p.m, 1:60 w/w) in 1,2-dichloroethane 

at 60°C produces 7-deoxy-713,81]-methanobaccatin III (28) 19 in 75% yield. When 28 is carried through a 
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sequence of reactions analogous to those described in the preceding paragraph, we obtain 29 (the analog 

derived from 14 upon removal of the 2'-troc group). The influence of the C-9 substituent upon the 

reactivity of a 7-O-triflate is clearly seen by comparison of our results with those of Klein and coworkers. ~ 

Their report describes migration of the C-8 methyl to C-7 when a baccatin having both 71]- and 9(x- 

hydroxyl groups is treated with triflic anhydride. The formation of an intermediate carbocation at C-8 is 

postulated, which undergoes further rearrangement by contraction of ring B from eight to seven carbons in 

size. Our results show that when there is a carbonyl group at C-9, the 7-O-triflates are relatively stable 

compounds which are converted to 6,7-olefins or 7,8-cyclopropanes under the conditions described above. 

Clearly, the electron withdrawing effect of the C-9 carbonyl group stabilizes the 7-O-triflates and 

completely inhibits carbocation formation at C-8. 
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As a final point of interest, we report that hydrazine (98%) in 95% ethanol is an excellent reagent for 

cleavage of the 10-acetate group when there is a free hydroxyl group at C-7. For example, 10- 

acetyltaxotere (11) is converted to taxotere z° (30) in 86% yield at room temperature under these conditions. 

When the C-7 hydroxyl group is absent or masked by a protecting group, the removal of the 10-acetate by 

these conditions is much less effective. 
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